Related Rates

Peyam Ryan Tabrizian

Wednesday, March 2nd, 2011

How to solve related rates problems

1) Draw a picture!, labeling a couple of variables. HOWEVER do not put any numbers on your picture, except for constants! (otherwise you'll get confused later on)
2) Figure out what you ultimately want to calculate, and don't lose track of it
3) Find an equation relating your variables (perhaps not all of them)
4) Differentiate your equation using the chain rule/implicit differentiation.
5) NOW plug in all the numbers you know! Sometimes, you might need to calculate a number of 'missing variables'. Here an extra picture with all the numbers plugged in might be useful
6) Solve for whatever you were looking for in 2)

List of tricks

- Pythagorean theorem
- Formulas for areas and/or volumes
- Law of similar triangles
- Definition of sin and cos
- Law of sines, law of cosines

Problem 1

Suppose the volume of a sphere is increasing at a rate of $1 \mathrm{~cm}^{3} / \mathrm{s}$. At what rate is its radius increasing if $r=2 \mathrm{~cm}$?

Problem 2

A cylindrical gob of goo is undergoing a transformation in which its height is decreasing at a rate of $1 \mathrm{~cm} / \mathrm{s}$ while its volume is decreasing at the rate of 2π $\mathrm{cm}^{3} / \mathrm{s}$ (It retains its cylindrical shape while all of this is happening). If, at a given instant, its volume is $24 \pi \mathrm{~cm}^{3}$ and its height is 6 cm , determine whether its radius is increasing or decreasing at that instant, and at what rate.

Problem 3

[3.9.15] Two cars start at the same point. Car A travels South at a rate of 6 mi / h and Car B travels West at a rate of $2.5 \mathrm{mi} / \mathrm{h}$. At what rate is the distance between the two cars increasing 2 hours later?

Problem 4

[3.9.24] A trough is 10 ft long and its ends have the shape of isosceles triangles that are 3 ft across the top and have a height of 1 ft . If the trough is being filled with water at a rate of $12 \mathrm{ft}^{3} / \mathrm{min}$, how fast is the water level rising when the water is 6 inches deep?

Problem 5

[3.9.30] A ladder 10 feet long rests against a vertical wall. The bottom of the ladder slides away from the wall at a rate of $1 \mathrm{ft} / \mathrm{s}$. How fast is the angle between the ladder and the ground changing when the bottom is 6 feet from the wall?

Problem 6

[3.9.35] Two sides of a triangle have lengths 12 m and 15 m . The anle between them is increasing at a rate of $2^{\circ} / \mathrm{min}$. How fast is the length of the third side increasing when the angle between the sides of fixed length is 60°

